

110

Introduction

Operating System is a type of System Software that has a direct

interface with the hardware of the computer system. It provides a

communication link between the user and the hardware. Operating Systems

are important software in the sense that they carry out multiple tasks and

are responsible for the overall operation of the system. One of the important

parts of the operating system is the scheduling of the different processes.

CPU scheduling is a process in which always one process uses the CPU while

the execution of another process is on hold (in waiting for state) due to

unavailability of any resource like I/O etc., thereby making full use of CPU.

CPU scheduling aims to make the system efficient, fast and fair.

Over the period different scheduling algorithms have been developed

and used in operating systems. When it comes to the selection of a

scheduling algorithm a criterion needs to be defined

explicitly[3][4][5][6][7][8]. Certain criteria have been defined for measuring

the quality of scheduling algorithms. Waiting Time and Turnaround time are

the important factors in comparing the performance of the algorithms.

Waiting Time is defined to be the time before a process could get the

CPU. Turnaround time is the time taken by the process to get completely

executed by the CPU. One of the popular scheduling algorithms is Round

Robin and is developed specifically for time-shared systems. It is similar to

First Come First Served(FCFS) scheduling algorithm whereby a process is

Kardan Journal of Engineering and

Technology

 3 (1) 110–116

©2021 Kardan University

Kardan Publications

Kabul, Afghanistan

DOI: 10.31841/KJET.2021.22

https://kardan.edu.af/Research/Kardan_journal_

of_engineering_and_technology.aspx# Abdul Ghaffar

Milad Akbari

Maiwand Yousufzai

Milad Scheduling Algorithm
(MSA)

Abstract

In today's world, a lot of software is operational in different fields. One of the most
important types of software is the operating system. It is an immense set of system

software in terms of its functionality and size. It directly interacts with the hardware,
fully controls different hardware, and provides a bridge between the user and the
hardware. One of the important tasks of the operating system is to schedule the

processes so that they can be completed at an acceptable time. Different scheduling
algorithms have been proposed, like First Come, First Served (FCFS), Shortest Job
First (SJF), and Round Robin Algorithm. In this paper, a new scheduling algorithm

has been proposed and its performance has been compared with other existing
algorithms, which has proved that Milad's Scheduling Algorithm (MSA) is better in

related aspects.

Keywords: MSA, Algorithm, Software, Operating System

Article

Received: 18 May 21
Revised: 02 Oct 21
Accepted: 28-Nov 21

 Ghaffarm Akbari and Yousufzai (2021)

111

assigned to the CPU until it gets finished. In Round Robin, there is a fixed

time quantum whereby a process coming from the queue is given to the

CPU according to the quantum time[4-11]. If the process burst time was

shorter than the quantum time the scheduler will assign CPU to the next

process. If the burst time for the queue was longer than the quantum time

then the process will be put at the end of the queue after completing the

quantum time. But the disadvantage of Round Robin is that the average

waiting time gets large.

2. Literature Review

In the following lines, various scheduling algorithms have been

discussed.

Burst Round Robin Algorithm:

 In this paper, Helmy and Dekdouk[12] proposed a proportional time-

sharing scheduling algorithm according to the burst time of the processes

whereby a process having higher burst time will get more burst time and

the processes having less burst time will get less burst time. The

disadvantage in this approach is that it increases the context switches to

more than 50% to the Round Robin.

Changeable Time Quantum Algorithm:

 In [4] Samih has proposed that the slice time based on the Round Robin

approach should be calculated using integer programming whereby the slice

time should neither be large nor short. The disadvantage of this approach

is that it doesn’t define the limits for the time slice. If the processes are

arranged in ascending order then this method behaves like Shortest Job

First(SJF) otherwise like FCFS.

Enhanced Round Robin Algorithm:

 In [13] Tajwar proposed a dynamic time quantum allocation for each

process whereby it is calculated based on the burst time of the processes

in the queue. Once the time slice is assigned to a process and it didn’t get

finished time next time a different time slice is calculated based on the burst

times of the remaining processes in the queue. The weak point in this

procedure is that the new time slice is calculated based on the average mean

of all the burst times which in some cases may be too long for some

processes.

An Adjustable Round Robin Algorithm:

 In [14] Mostafa and Amano have proposed that the short burst

processes should be put first in the queue and then the time quantum

should be assigned to each process. The authors propose that this

technique will reduce the context switch. But the disadvantage of the

approach as we showed in this paper that its average waiting time and

average turnaround time gets higher.

In the following lines, experiments have been carried out to show the

performance comparison between An adjustable Round Robin algorithm and

 Demonstration of HDM-4 in Evaluating Different Investment Alternatives for Unpaved Road

112

Milad’s Scheduling Algorithm in terms of Turnaround time and Waiting Time.

It has been proved through experiments that MSA performs better.

CPU Scheduling Criteria:

Arrival Time: Time at which the process arrives in the ready queue.  

Burst Time: Time required by a process for CPU execution.  

Completion Time: Time at which the process completes its execution.  

Turnaround Time: Time Difference between completion time and arrival time. TAT

= CT – AT Waiting Time: Time Difference between turnaround time and burst time.

WT = TAT – BT  

Milad’s Scheduling Algorithm (MSA) :

Milad’s Scheduling Algorithm is a preemptive scheduling algorithm in which

two queues are linked with stack and hash table. The initial queue is called

In_Queue and the queue which takes the remaining processes to the hash table is

called Out_Queue. In Milad’s Scheduling Algorithm, both stack and hash table

contain a program called MTCA (Milad’s Time Complexity Analyzer) by which

process median average burst time is calculated as variable time quantum.

 Both stack and the hash table will store process information in three sections:

a) Process ID  

b) Burst time III. TYPES OF SCHEDULING ALGORITHM  

There are two types of scheduling algorithms.

Non-preemptive Scheduling Algorithm:

When a process enters the state of running, the state of that process

is not changed until it finishes execution or goes to a waiting state.

Preemptive Scheduling Algorithm:

 Preemptive scheduling is prioritized. The highest priority process

should always be the process that is currently utilized.

c) Priority number  

Many times it happens that more than one process gets opened and is being

executed when another process gets opened. In this case, the operating system

has scheduled the processes so that every process gets a fair share of time to

execute the processes. The popular scheduling algorithm that is used in today’s

operating system is the Round Robin scheduling algorithm[1]. It has bee

 shown in today’s research paper that Milad’s Scheduling

Algorithm(MSA) performance is much better than the Round Robin and First

Come First Serve(FCFS) algorithm[2] in terms of average turnaround time

and average waiting time.

III. MSA PSEUDOCODE

• Insert process to In_Queue  

 Ghaffarm Akbari and Yousufzai (2021)

113

• Push the process to stack  

• The initial process priority number is 0 as it arrives in the stack  

• MTCA (Milad Time Complexity Analyzer) will define the maximum

time quantum a process can execute. It will take all process burst

time in both stack and hash table adds them up and divide them

by the number of the processes.

• The scheduler checks for which process the MTCA time is sufficient

to execute. In other words, those processes that cannot complete

their execution due to MTCA time will be ignored.

• If there are more than 1 process that can finish execution by

providing them MTCA time, the only process that can be selected

is the one with the highest priority number.  

• While the process is executing, if a new process comes to the

In_Queue, the old process will be preempted and it will be inserted

into the Out_Queue.

• Since Out_Queue is connected with the hash table, the old process

is shifted into o hash table

• As Milad’s Scheduling Algorithm implies, the size of the hash table

will be constant 100 so the procremainsmain burst time indicates

to which location n of the hash table to be inserted. The formula

will be: f(x) = x % 100  

• If any process is executed, the priority number of that process will

decrease and all the remaining process priority numbers will

increase

• If the cess in the hash table is selected for re-execution, it will be

again pushed to In_Queue and the procedure will continue until all

processes have been executed completely. The formula for selecting

the process in hash table is: f(x) = x % 100

Advantages of Milad’s Scheduling Algorithm:

• No starvation problem

• No convoy effect problem

• Better response time compared to SJF &

• FCFS

• Less context switch compared to Round Robin algorithm

• More throughput since the selected process will have complete MTCA time

• Less TAT & WT as compared to RR algorithm

• The time for fetching the process from the table will be constant O(1) in

most cases due to the usage of the hash table in MSA data structures.

• More overload of processes = more efficient MSA algorithm

Experimental Framework

The experiment consists of several input and output parameters. The

input parameters consist of arrival time, burst time and the number of

processes. The output parameters consist of average waiting time and an

average turnaround time.

 Demonstration of HDM-4 in Evaluating Different Investment Alternatives for Unpaved Road

114

(I)

 MSA FCFS RR

Process
Arrival

Time

Burst

Time
TAT WT TAT WT TAT WT

P1 0 10 10 0 10 0 10 0

P2 8 12 21 17 14 10 21 17
P3 10 5 5 10 17 22 10 15

P4 15 2 2 15 14 27 7 20

(II)

 MSA FCFS RR

Process

Arrival

Time

Burst

Time TAT WT TAT WT TAT WT

P1 0 4 4 0 4 0 4 0

P2 2 7 14 9 9 4 24 19

P3 5 5 7 7 11 11 9 9

P4 6 8 14 12 18 16 23 21

P5 8 9 17 16 25 24 25 24

The above experiment has been taken from one of the research papers in [3]. It

has been done to prove MSA algorithm is performing better than the proposed

algorithm in the paper for the experiments mentioned there.

(III)

 MSA FCFS RR

Process
Arrival

Time

Burst

Time
TAT WT TAT WT TAT WT

P1 0 3 3 0 3 0 5 2

P2 1 6 14 9 8 3 14 9

P3 4 4 6 6 9 9 9 9

P4 6 2 2 6 9 13 5 9

We can observe from the above experiments that the MSA Algorithm has

reduced the turnaround time and the waiting time of the process and increased

CPU efficiency. The purposed algorithm is better than simple [RR], [FCFS], and [the

optimized RR algorithm] as we observed. MSA has the best capabilities for

reducing response time, increasing throughput and avoiding convoy effect

problems due to the constraints MSA suggests.

(IV)

 MSA RR ADRR

Process
Arrival

Time

Burst

Time
TAT WT TAT WT TAT WT

P1 0 14 60 46 54 40 60 46

P2 0 13 53 40 57 44 23 10

P3 0 12 33 21 59 47 35 23

P4 0 10 10 0 40 30 45 35

P5 0 11 21 10 60 49 56 45

Milad Scheduling Algorithm proved its performance in comparison with [14].

Starvation has been extremely reduced due to MSA efficient responsiveness and

maximum possible throughput.

 Ghaffarm Akbari and Yousufzai (2021)

115

(V)

 MSA RR IRRVQ

Process

Arrival

Time

Burst

Time TAT WT TAT WT TAT WT

P1 0 15 25 10 61 46 55 40

P2 0 32 103 71 103 71 103 71

P3 0 10 10 0 46 36 10 0

P4 0 26 87 61 101 75 91 65

P5 0 20 45 25 93 73 75 55

As demonstrated in the chart above, the suggested algorithm has shown an

extensive capability for both reducing TAT and WT.

Processes will receive CPU response faster as compared to [15].

5. Conclusion

From the experiments above it is proved that the average turnaround time

and average waiting time of MSA is better than the FCFS and Round Robin

algorithm. This scheduling method has been compared with one of the latest

methods [14] and in comparisons above it demonstrates the better performance

of MSA in terms of waiting times and turnaround times. This approach can be

practically implemented to further check its proper relevance to the scheduling of

the processes.MSA has also been compared in the above lines with [15] and has

shown through experiments and graphs that it performs better in terms of

Turnaround Time and Waiting Time. MSA through comparisons with RR, FCFS and

other updated scheduling algorithms have demonstrated that It could be a very

promising algorithm to be implemented in today’s various operating systems.

Reference

[1] Silberschatz, Galvin and Gagne, Operating systems concepts, 8th edition,

Wiley, 2009.

[2] A.S. Tanenbaun, Modern Operating Systems.3rd Edn, Prentice Hall, ISBN:13:
9780136006633, pp: 1104, 2008

[3] A. Singh, P. Goyal and S. Batra. An Optimized Round Robin Scheduling
Algorithm for CPU Scheduling. In International Journal on Computer Science
and Engineering,Vol.02, No. 07, 2010,2383-2385

[4] S. M. Mostafa and S. Kusakabe, “Effect of Thread Weight Readjustment
Scheduler on Scheduling Criteria,” Inf. Eng. Express, Jan. 2015.

[5] S. M. Mostafa and S. Kusakabe, “Towards Maximizing Throughput for
Multithreaded Processes in Linux,” Int. J. New Comput. Archit. their Appl., vol.

4, no. 4, pp. 70–78, 2014.

[6] A. Singh, P. Goyal, and S. Batra, “An optimized round robin scheduling

algorithm for CPU scheduling,” Int. J. Comput. Sci. Eng., vol. 02, no. 07, pp.
2383–85, 2010.

[7] S. Elmougy, S. Sarhan, and M. Joundy, “A novel hybrid of Shortest job first
and round Robin with dynamic variable quantum time task scheduling
technique,” J. Cloud Comput., vol. 6, no. 1, pp. 0–12, 2017.

 Demonstration of HDM-4 in Evaluating Different Investment Alternatives for Unpaved Road

116

Mr. Abdul Ghaffar Department of Computer Science, Faculty of Engineering and
Technology Kardan University, Kabul, Afghanistan. <a.ghaffar@kardan.edu.af>

Mr. Milad Akbari, Department of Computer Science, Faculty of Engineering and Technology
Kardan University, Kabul, Afghanistan.

Mr. Maiwand Yousufzai, Department of Computer Science, Faculty of Engineering and

Technology Kardan University, Kabul, Afghanistan.

[8] S. M. Mostafa, “Proportional Weighted Round Robin: A Proportional Share
CPU Scheduler in Time Sharing Systems,” Int. J. New Comput. Archit. their

Appl., vol. 8, no. 3, pp. 142–47, 2018.

[9] S. M. Mostafa, S. Z. Rida, and S. H. Hamad, “Finding Time Quantum of Round

Robin Cpu Scheduling Algorithm in General Computing Systems Using
Integer Programming,” Int. J. New Comput. Archit. their Appl., vol. 5, no.

October, pp. 64–71, Jan. 2010.

[10] A. R. Dash, S. kumar Sahu, and S. K. Samantra, “An Optimized Round Robin
CPU Scheduling Algorithm with Dynamic Time Quantum,” Int. J. Comput. Sci.

Eng. Inf. Technol., vol. 5, no. 1, pp. 07-26, 2015.

[11] M. S. Iraji, “Time Sharing Algorithm with Dynamic Weighted Harmonic Round
Robin,” J. Asian Sci. Res., vol. 5, no. 3, pp. 131–42, 2016.

[12] T. Helmy and A. Dekdouk, “Burst round robin as a proportional-share
scheduling algorithm,” Jan. 2007.

[13] M. M. Tajwar, M. N. Pathan, L. Hussaini, and A. Abubakar, “CPU scheduling
with a round robin algorithm based on an effective time slice,” J. Inf. Process.

Syst., vol. 13, no. 4, pp. 941–50, 2017.

[14] S.M.Mostafa,H.Amano,” An Adjustable Round Robin Scheduling Algorithm in

Interactive Systems”,Info. Engg.Express Int.Inst. App.Info. 2019,Vol
5,No.1,11-18

[15] M.K.Mishra,F.Rashid,”An Improved Round Robin CPU Scheduling Algorithm

with varying Time Quantum”,IJCSEA Vol 4, No.4, 201

About the Authors

